
In This Chapter

Introduction
General MDO Cmdlets
Email & Collaboration Policies
Tenant Allow / Block List Items
Advanced Delivery
Enhanced Filtering
ORCA
Configuration Analyzer
Defender Evaluation

Introduction

Microsoft released Advance Threat Protection (ATP) as a premium feature for their Office 365 product line. With
time comes change as ATP has now morphed into the newly (as of 2020) renamed Microsoft Defender for Office
365 (MDO)which is part of the larger Microsoft Defender Suite that was introduced at Ignite in 2020. One thing
to keep in mind is that it is designed to do many things. It was not designed to just protect Exchange, but was
intended to be a more holistic product to protect the suite of products that is Office 365. A whole slew of products
have been released to bolster this approach:

Safe Links
Safe Attachments
Anti-Phish
… and more …

In the background of all of these features, there are PowerShell cmdlets to help us configure, manage and utilize
these features of Office 365. In this section we’ll start with some overarching reporting cmdlets and then dive into
each feature that MDO provides and that we have PowerShell for. Note that some features that are part of the
MDO licensing are NOT going to be covered. This is because either they are in another workload (Security and
Compliance Center) or there are no relevant PowerShell cmdlets at the moment in the Exchange Online module.

One thing to note when it comes to MDO and Office 365, there is specific licensing that needs to be in place in
order to expose the features and thus the PowerShell cmdlets in the module. Make sure to read this page about
licensing requirements and what features are exposed depending on what license is purchased:

https://docs.microsoft.com/en-us/office365/servicedescriptions/office-365-advanced-threat-protection-
service-description

General MDO Cmdlets

While the naming of the product has changed, the background PowerShell cmdlet have not. All cmdlets for base

- 8 -

 Defender for Office 365

https://docs.microsoft.com/en-us/office365/servicedescriptions/office-365-advanced-threat-protection-service-description
https://docs.microsoft.com/en-us/office365/servicedescriptions/office-365-advanced-threat-protection-service-description

173

configurations have ATP in them still. The Exchange Online PowerShell module includes some general reporting
cmdlets that may be helpful in getting an idea of what is configured, what is flowing through the tenant and more.
Let’s see what cmdlets we have available to explore this aspect of an Exchange Online tenant.

Make sure to connect with the Exchange Online v2 PowerShell Module first:

Connect-ExchangeOnline

Cmdlets: (We need to specify the source as other cmdlets get displayed that are not relevant.)

Get-Command *atp* | Where {$_.Source -eq ‘tmp_ielfbchc.2s1’}

We get a list of cmdlets:

Add-ATPEvaluation Disable-ATPProtectionPolicyRule
Enable-ATPProtectionPolicyRule Get-AdvancedThreatProtectionDocumentDetail
Get-AdvancedThreatProtectionDocumentReport Get-AdvancedThreatProtectionTrafficReport
Get-ATPEvaluation Get-AtpPolicyForO365
Get-ATPProtectionPolicyRule Get-ATPTotalTrafficReport
Get-MailDetailATPReport Get-MailTrafficATPReport
New-ATPProtectionPolicyRule Remove-ATPEvaluation
Remove-ATPProtectionPolicyRule Set-AtpPolicyForO365
Set-ATPProtectionPolicyRule

Now that we have a list of cmdlets we can work with, let’s dive right in.

Get-AtpPolicyForO365

This cmdlet will display the current configuration for Office 365 and it’s MDO features: (below are defaults):

NOTE: There aren’t a lot of parameters with the Get-AtpPolicyForO365 cmdlet. So just run Get-
AtpPolicyForO365 as is to get the results above.

174

Once we have turned on the features present for ATP, we would see something like below:

How do we configure those settings? Use the Set-AtpPolicyForO365 cmdlet.

Set-AtpPolicyForO365

From our above defaults, it looks like there are quite a few features that are turned off by default.

AllowClickThrough: If a URL is blocked, setting this value to $True allows a user to still click through to the
original blocked URL.
BlockUrls: Specify one or more URLs to be blocked by Safe Links.
EnableATPForSPOTeamsODB: $True enables ATP for SharePoint Online, OneDrive for Business, and
Microsoft Teams.
EnableSafeLinksForClients: Enable or disable Safe Links for Office 365 Pro Plus Clients.
TrackClicks: Set to $True to track the clicks a user makes on blocked URLs.

These options seem pretty straight forward. For a sample configuration, we would like to enable Safe Links for
email, track any clicks that may occur and make sure to block any click-throughs for blocked URLs. We can do
that with this one-liner:

Set-AtpPolicyForO365 -AllowClickThrough $False -EnableSafeLinksForClients $True -TrackClicks $True

Which we can validate by running Get-AtpPolicyForO365:

We could have also enabled Safe Links for OneDrive, SharePoint and Teams if we wanted to protect those as well.

Chapter 8: Defender for Office 365

175

ATP Protection Policy Rule

By default there are no ATP Protection Policy Rules in place. These rules can be created in two ways, one is to
apply either the Standard or Strict settings Microsoft documents [here] or we can create them with PowerShell.
In order to apply the Standard or Strict settings, we first need to visit the Security and Compliance Center [here]
and browse to the Security and Compliance Center --> Threat Management --> Policy --> Preset security policies:

From this interface we can apply Standard or Strict policies based on a set of conditions that include verified tenant
domains, groups or individual users.

Once a policy is applied, we can see this in Exchange Online PowerShell with the Get-ATPProtectionPolicyRule
cmdlet. We can also see the mapped policies to the rule:

These Safe Links Policies and Safe Attachment Policies are pre-built and ready to be assigned like the above ATP

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/preset-security-policies
https://protection.office.com

176

Protection Policy Rule.

New-ATPProtectionPolicyRule

We can reverse engineer the settings by looking at the ATP Protection Rule we created in the Preset Security
wizard. We see we have a name, a Safe Links Policy and a Safe Attachments Policy. We can use this information
to create a one-liner:

New-ATPProtectionPolicyRule -Name ‘Standard Preset Security Policy’ -RecipientDomainIs
‘PowerShellGeek.com’ -SafeAttachmentPolicy ‘Standard Preset Security Policy’ -SafeLinksPolicy
‘Standard Preset Security Policy’

Which creates the Policy for us:

The change is also presented in the Security and Compliance Center under Preset Security Policies:

What other options do we have for creating a new ATP policy here?

SentToMembersOf: Specify a group of mailboxes to protect with this policy.
SentTo: Specify individual mailboxes to be protected.
SafeAttachmentPolicy: Specify the Standard or Strict Preset Security Policy.
SafeLinksPolicy: Specify the Standard or Strict Preset Security Policy.
ExceptIfRecipientDomainIs: Exclude a particular SMTP domain from the policy settings.
ExceptIfSentTo: Exclude individual mailboxes from the policy settings
ExceptIfSentToMemberOf: Exclude groups from the policy settings.
Comments: Add appropriate comments about the new Policy Rule.

Scenario

Let’s say that we have a company whose primary domain is PowerShellGeek.com and they deal in custom
PowerShell application for their Office 365 customers. They want to set up two layers of policies where all users
get at least the Standard Protection Policy, but select groups get the Strict Protection Policy. How would we
layer these policies so that we don’t create conflicts? We can create one Standard policy for all users and use the
‘ExceptIfSentToMemberOf ’ to block the policy for those select groups. Then we create a second policy using the
‘SentToMemberOf ’ and choose the Strict Protection Policy.

Chapter 8: Defender for Office 365

177

PowerShell code:

Standard Policy
New-ATPProtectionPolicyRule -Name ‘Corp-Standard-ATP-Policy’ -RecipientDomainIs ‘PowerShellGeek
.com’ -SafeAttachmentPolicy ‘Standard Preset Security Policy’ -SafeLinksPolicy ‘Standard Preset
Security Policy’ -ExceptIfSentToMemberOf ‘Excluded-ATP-Standard-Group’
Strict Policy
New-ATPProtectionPolicyRule -Name ‘Corp-Strict-ATP-Policy’ -RecipientDomainIs ‘PowerShellGeek
.com’ -SafeAttachmentPolicy ‘Strict Preset Security Policy’ -SafeLinksPolicy ‘Strict Preset Security Policy’
-SentToMemberOf ‘Excluded-ATP-Standard-Group’

We now have two complementing policies with no overlap: [note the group mentioned in each policy]

Exchange Online Protection (EOP) Protection Policy Rule

Exchange Online Protection is Microsoft’s messaging hygiene solution. By default there are no EOP Protection
Policy Rules in place. These rule can be created in two ways, one is to apply either the Standard or Strict settings
Microsoft documents [here] or we can create them with PowerShell. In order to apply the Standard or Strict
settings, we first need to visit the Security and Compliance Center [here] and browse the Security and Compliance
Center --> Threat Management --> Policy --> Preset security policies:

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/preset-security-policies
https://protection.office.com

178

From this interface we can apply Standard or Strict policies based on a set of conditions that include verified tenant
domains, groups or individual users.

Once a policy is applied, we can see this in Exchange Online PowerShell with the Get-EOPProtectionPolicyRule
cmdlet. We can also see the mapped policies to the rule:

Notice in the screenshot of the EOP Protection Rule that the Hosted Content Filter Policy is listed as ‘Standard
Present Security Policy’ but there is no policy with that name, there is only the Default Hosted Content Filter. For
the AntiPhish and Malware policies, there are matching ones we can list with PowerShell. The question is, can we
assign all three with PowerShell or will it complain that there is no Hosted Content Filter Policy? Let’s try an EOP
rule that mimics the ATP rule we created previously, like so:

New-EOPProtectionPolicyRule -Name ‘Standard Preset Security Policy’ -HostedContentFilterPolicy
‘Standard Preset Security Policy’ -AntiPhishPolicy ‘Standard Preset Security Policy’ -MalwareFilterPolicy
‘Standard Preset Security Policy’ -RecipientDomainIs ‘PracticalPowerShell.Com’

Works!

Chapter 8: Defender for Office 365

179

Similar to the ATP Rule we have options for SentTo, SentToMemberOf, RecipientDomainIs, ExceptIfSentTo,
ExceptIfSentToMemberOf, ExceptIfRecipientDomainIs and Comments.

Scenario

Taking our example from the ATP section again where we have a company whose primary domain is
PracticalPowerShell.com and they deal in custom PowerShell application for their Office 365 customers. They want
to set up two layers of EOP policies where all users get at least the Standard Protection Policy, but select groups
get the Strict Protection Policy. How would we layer these policies so that we don’t create conflicts? We can create
a Standard policy for all users and use the ‘ExceptIfSentToMemberOf ’ to block the policy for those select groups.

Standard Policy
New-EOPProtectionPolicyRule -Name ‘Corp-Standard-EOP-Policy’ -HostedContentFilterPolicy ‘Standard
Preset Security Policy’ -AntiPhishPolicy ‘Standard Preset Security Policy’ -MalwareFilterPolicy ‘Standard
Preset Security Policy’ -RecipientDomainIs ‘PracticalPowerShell.Com’ -ExceptIfSentToMemberOf
‘Excluded-ATP-Standard-Group’

Strict Policy
New-EOPProtectionPolicyRule -Name ‘Corp-Strict-EOP-Policy’ -HostedContentFilterPolicy ‘Strict Preset
Security Policy’ -AntiPhishPolicy ‘Strict Preset Security Policy’ -MalwareFilterPolicy ‘Strict Preset Security
Policy’ -RecipientDomainIs ‘PracticalPowerShell.Com’ -SentToMemberOf ‘Excluded-ATP-Standard-
Group’

We now have two complementing policies with no overlap: [note the group mentioned in each policy]

180

Email & Collaboration Policies
Introduction

In addition to the global MDO settings, we also have our individual policies for Spam, Phishing, and other message
hygiene components. In this section we will break down each feature and PowerShell that can be used to configure
it.

Anti-Phishing

Social engineering has been around since way before computers were invented. People have been trying to
convince people to do things for them before technology made this a bit more automated. Now with email and
the Internet we have a phenomenon called Phishing where one party is trying to convince another party to do
something - click a link, provide a password or some other task in order to retrieve some information. Microsoft
realized this was an issue when it built out the Anti-Phishing features that are present in Office 365. Anti-Phishing
is also a feature that is part of the ATP set from Microsoft. Same licensing applied to Anti-Phishing as it does to
any other portion of the ATP suite.

Behind the scenes Microsoft is using machine learning combined with impersonation algorithms in order to detect
these types of messages. An incoming message is analyzed against a series of tests on it’s way to the recipients
mailbox. What happens to the message is determined by a combination of Microsoft’s built-in filters and your own
Anti-Phishing policies that are configured.

For the part that we can configure in Office 365, let’s explore the PowerShell side of the configuration.

PowerShell cmdlets

First, we need a list of cmdlets to work with to see what we can do in PowerShell:

Get-Command *AntiPhish*

This reveals the following list of cmdlets:

Disable-AntiPhishRule Enable-AntiPhishRule
Get-AntiPhishPolicy Get-AntiPhishRule
New-AntiPhishPolicy New-AntiPhishRule
Remove-AntiPhishPolicy Remove-AntiPhishRule
Set-AntiPhishPolicy Set-AntiPhishRule

First, we will start with an Anti-Phish Policy. If we run the Get-AntiPhishPolicy we see that there is a default policy
already in place called ‘Office365 AntiPhish Default’. This policy is applied when no other policies match. In fact,
we cannot even create a rule that applies to this policy as it isn’t allowed:

Chapter 8: Defender for Office 365

181

Let’s go ahead and create our own policy using the New-AntiPhishPolicy cmdlet. What parameters and switches
do we have available to us: (... it is a very long list ...)

AuthenticationFailAction: If composite authentication (*) fails, then an action is performed, MoveToJmf
(Move to Junk Mail Folder) is the default, while we also have the option to put the message into ‘Quarantine’
as well.
EnableAntiSpoofEnforcement: $True - Enable anti-spoofing protection (default and recommended setting)
$False - Disable antispoofing protection.
EnableAuthenticationSafetyTip: $True - Tip is displayed if a message fails composite authentication (*)
(default and recommended setting) / $False - Tip is not displayed.
Enabled: $True - Policy is enabled / $False - Policy is disabled.
EnableMailboxIntelligence: $True - Use mailbox intelligence (**) for domain and user impersonation / $False
- Do not use mailbox intelligence (**) in this case (default value).
EnableMailboxIntelligenceProtection: $True - Enables protection based on Mailbox Intelligence / $False -
disables this protection (default value).
EnableOrganizationDomainsProtection: $True - Enables domain impersonation protection for all registered
domains in Office 365 / $False - disables this feature (default value).
EnableSimilarDomainsSafetyTips: $True - Enables safety tips for domain impersonation detections / $False
- disables these safety tips (default value).
EnableSimilarUsersSafetyTips: $True - Enables safety tips when a recipient for user impersonation detections
/ $False - disables these safety tips (default).
EnableTargetedDomainsProtection: $True - Enables domain impersonation protection for domains specified
in the TargetedDomainsToProtect parameter / $False - does not use targeted domain protection (default).
EnableTargetedUserProtection: $True - Enables impersonation protection for users specified in the
‘TargetedUsersToProtect’ Parameter / $False - disables this feature (default).
EnableUnauthenticatedSender: $True - Adds a ‘?’ to a user’s Outlook contact card if it fails authentication
checks / $False - no ‘?’ will be added with authentication failure.
EnableUnusualCharactersSafetyTips: $True - Display safety tip if there is an unusual character in user or
domain impersonation / $False - No safety tip displayed (default).
ExcludedDomains: Domains that are excluded from the scanning process.
ExcludedSenders: Senders who are excluded from the scanning process.
ImpersonationProtectionState: Valid values are automatic, manual and off. Manual is the default value.
MailboxIntelligenceProtectionAction: When a message fails mailbox intelligence, what action is taken to the
message - NoAction (default), BccMessage, Delete, MoveToJmf, Quarantine and Redirect.
MailboxIntelligenceProtectionActionRecipients: If the previous parameter is set to Redirect or BccMessage,
then a recipient needs to be specified to handle this message.
PhishThresholdLevel: Machine learning level used in scanning: (1) Standard (default), (2) Aggressive, (3)
More Aggressive and (4) Most Aggressive. So values of 1, 2, 3 or 4 are valid.
PolicyTag: This value is not specified in the Online help for the cmdlet, but it is a valid parameter that can be
chosen when creating a policy. No documentation out there at the moment.
SimilarUsersSafetyTipsCustomText: Create your own custom text for User based impersonation.
TargetedDomainActionRecipients: Works with the TargetedDomainProtectionAction parameter so specify
users to receive BccMessage or Redirected email. Can be one or more addresses.
TargetedDomainProtectionAction: When there is a detected domain impersonation, what action is taken to
the message - NoAction (default), BccMessage, Delete, MoveToJmf, Quarantine and Redirect.
TargetedDomainsToProtect: List of domains to protect. Used in conjunction with the
EnableTargetedDomainsProtection parameter.
TargetedUserActionRecipients: Used in conjunction with the ‘TargetedUserProtectionAction’ parameter to

182

specify which users should be targeted by this policy.
TargetedUserProtectionAction: When there is a detected user impersonation, what action is taken to the
message - NoAction (default), BccMessage, Delete, MoveToJmf, Quarantine and Redirect.
TargetedUsersToProtect: Specifies users to protect when the ‘ EnableTargetedUserProtection’ parameter is set
to $True.
TreatSoftPassAsAuthenticated: $True (default) respect soft pass results / $False - makes anti-spoofing more
restrictive and could result in false positives.
UnusualCharactersSafetyTipsCustomText: Create your own custom text for unusual character detection
based impersonation.
(*) Composite Authentication is a reference to various Anti-Spam checks - DMARC, SPF, DKIM and other
factors that determine if a message has authenticated. See here for more details:
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/anti-spam-message-headers.
(**) Mailbox Intelligence is understanding a users habits and personal contacts. A map of these contacts and
their habits is built and used to intelligently make decisions for incoming messages. See here for more details
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-anti-phishing.

With all of these parameters, we are looking at quite a long list of options to choose from. How do we know what
options to pick? What values should be used and is there any guidance on this? Well, we can use the default policy
for some guidance as well as the defaults that are provided. For this policy, we will single out one user and apply
some settings for testing - Mailbox Intelligence, unusual character safety tips and then user a target action to BCC
the message to an IT person for awareness.

New-AntiPhishPolicy -Name ‘Test User Policy’ -TargetedUsersToProtect ‘damian@practicalpowershell.
com’ -TargetedUserProtectionAction BccMessage -EnableUnusualCharactersSafetyTips $True
-EnableMailboxIntelligenceProtection $True

Now this leads to two different errors. Both could have been avoided with a better examination of documentation.
First, the TargetedUsersToProtect value is in the wrong format, hence this error:

As we can see, the correct value id “<displayname>;<emailaddress>”. Next, we forgot that when we specify a
Redirect or BccMessage, we also need to specify the recipient of that message. Hence we have this error message and
need to find the correct parameter. The error specified that the RedirectToRecipients is incorrect. Unfortunately
this is the correct value.

Chapter 8: Defender for Office 365

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/anti-spam-message-headers
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-anti-phishing

183

However, if we review the list of parameters, we realize that we needed to set the ‘TargetedUserActionRecipients”:

This would provide a long one-liner, fixing all errors:

New-AntiPhishPolicy -Name ‘Test User Policy’ -TargetedUsersToProtect “damian-
pp;damian@practicalpowershell.com” -TargetedUserProtectionAction BccMessage
-EnableUnusualCharactersSafetyTips $True -EnableMailboxIntelligenceProtection $True -PolicyTag
‘TestPhish’ -TargetedUserActionRecipients john@domain.com

For this next example, we will protect an entire domain from every setting we can set, we will turn up the
aggressiveness to 3 and use all the custom safety tip text that we can get away with:

New-AntiPhishPolicy -Name ‘Protect Practicalpowershell.com’ -TargetedDomainProtectionAction
MoveToJmf -TargetedDomainsToProtect ‘practicalpowershell.com’
-EnableUnusualCharactersSafetyTips $True -EnableSimilarDomainsSafetyTips
$True -EnableTargetedDomainsProtection $True -PhishThresholdLevel 3
-UnusualCharactersSafetyTipsCustomText ‘Suspicious domain name detected - unusual characters’
-SimilarUsersSafetyTipsCustomText ‘Suspicious name detected - Similar users’

New-AntiPhishRule

We can use this cmdlet along with the previous New-AntiPhishPolicy to create an operating Anti-Phish mechanism
to protect users in our Exchange Online tenant. First, let’s see what parameters and switches are available:

AntiPhishPolicy: Specify the Anti-Phish Policy that is to be associated with this Rule
Comments: Add any relevant comments, possibly a creation date, purposes and/or who created the Rule
Enabled: If we choose, we can enable the rule upon creation or disable it upon creation if we do not wish the
Rule to be active.
ExceptIfRecipientDomainIs: Exception made for a specified domain.
ExceptIfSentTo: Exception made for a specified recipient.
ExceptIfSentToMemberOf: Exception made for a specified group.
Priority: Decide the order in which multiple Safe Attachment Rules are applied.
RecipientDomainIs: Exception made for a specified domain.
SentTo: Rule applies to specified recipients.
SentToMemberOf: Rule applies to specified members of the specified group.

Using the parameters above as well as one of the new Policies, we can create the new Rule to apply to one domain,

184

perhaps a test domain, like this:

New-AntiPhishRule -Name ‘Practical PowerShell Anti-Phish Rule’ -AntiPhishPolicy ‘Protect
Practicalpowershell.com’ -Enabled $True -RecipientDomainIs ‘practicalpowershell.com’
New-AntiPhishRule -Name ‘Test User Practical PowerShell Anti-Phish Rule’ -AntiPhishPolicy ‘Test User
Policy’-Enabled $True -SentTo: ‘damian@practicalpowershell.com’
‘Test User Policy’

Modify Existing Policies and Policies

With the previous Safe Links and Safe Attachments sections, we could disable the created rules by changing the
‘Enable’ value to $False. For Anti-Phishing Rules, we have a pair of cmdlets that we can use to disable rules as well.

Adding a comment:

Set-AntiPhishRule ‘Test User Practical PowerShell Anti-Phish Rule’ -Comments ‘This Rule applies to test
users for validating Anti-Phish scenarios.’

Changing the SentTo is easy as one line as well:

Set-AntiPhishRule ‘Test User Practical PowerShell Anti-Phish Rule’ -SentToMemberOf brian@
practicalpowershell.com

Remove Existing Policies and Policies

We can also remove the Anti-Phishing Rules and Policies, just like Safe Link/Attachment Rules and Policies. The
code is very similar to the previous examples:

Anti-Phishing Further Reading

Anti-phishing protection in Office 365
Tune anti-phishing protection in Office 365

NOTE: We cannot remove the default Anti-Phish Policy. We will receive the above error message.

Chapter 8: Defender for Office 365

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/anti-phishing-protection
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/tuning-anti-phishing

185

ATP anti-phishing capabilities in Office 365
Set up Office 365 ATP anti-phishing and anti-phishing policies
How Office 365 validates the From address to prevent phishing

Anti-Spam

Beyond the external control above, we have an additional layer of protection called Anti-Spam Policies. Some
are configurable in your specific tenant, while many others are inherent to the service and are not exposed for
configuration purposes. Similar to how other third-party providers will scan messages as they arrive at their
servers, will scan messages looking for known payloads, attack patterns and more. In the Anti-Spam section of
the Security Center, we see these types of filtering protections:

• Connection Filters - Consists of IP Allow and IP Block lists for controlling who can send email to you.
• Inbound Spam - Provides quite a few configurable options like Bulk Spam controls, domain/email block

and allow lists, international SPAM controls, as well as a set of more advanced controls.
• Outbound Spam - Configure notifications if outbound Spam is detected.

Now that we know the available configurable options are, how do we modify or configure these settings with
PowerShell?

Connection Filters

Connection Filters are used to specifically block or allow certain email server IPs from connecting to your Office
365 tenant. These types of filters are good for either allowing a trusted source, like a partner organization, to
connect or to block a server that is either currently sending Spam to your tenant or has done so in the past.
Microsoft already has extensive lists for blocked IPs due to its own internal parameters. You are more likely to use
an allowed IP connections than block when using EOP.

PowerShell

In order to configure these settings, we first need to find the cmdlets needed in PowerShell that will allow us to do
so. We’ll use the noun phrase ‘ConnectionFilter’ to find the relevant cmdlets:

Get-Command *ConnectionFilter*

First, if we run the Get-HostedConnectionFilterPolicy we see that the default policy is not configured with any
settings:

Now let’s review some examples for configuring this filter:

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-anti-phishing
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/set-up-anti-phishing-policies
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/how-office-365-validates-the-from-address

186

Get-Help Set-HostedConnectionFilterPolicy -Examples

Example

Engineers on the Messaging Team have been tracking the IP connections made by SMTP servers and were able
to connect Spam and Malware attacks by these bad IPs. On the reverse side the Messaging Team also has a list of
known good SMTP servers from clients, partners and other sources. They are now in the process of preparing
EOP as their new protection service before they move mailboxes to their new Exchange Online tenant.

In order to configure the IP Allow and IP Block lists, we need to run the Set-HostedConnectionFilterPolicy cmdlet
in order to do so. Here is a sample of what they would need to configure:

Set-HostedConnectionFilterPolicy Default -IPAllowList 64.34.23.43,23.100.100.1 -IPBlockList
64.34.23.44,23.100.100.2

We can verify the settings have been applied:

Get-HostedConnectionFilterPolicy Default

After applying these settings, one of the engineers realized they had their lists mixed, how can they reverse the
settings? First we’ll wipe out all settings to ensure no duplicates or odd values are retained:

Set-HostedConnectionFilterPolicy Default -IPAllowList $Null -IPBlockList $Null
Get-HostedConnectionFilterPolicy Default

Set-HostedConnectionFilterPolicy Default -IPBlockList 64.34.23.43,23.100.100.1 -IPAllowList
64.34.23.44,23.100.100.2
Get-HostedConnectionFilterPolicy Default

Spam Filter

The Spam Filters in Exchange Online are quite varied and can be a bit confusing. Trying to find PowerShell
cmdlets for configuring these settings can be confusing as well. That is because there is no cmdlet that is listed as

Chapter 8: Defender for Office 365

187

a Spam Filter cmdlet. How do we find the cmdlet for it? We use the ‘Show Command Logging’ feature that we
covered in Appendix B. By using that and changing one setting in the Spam Filter we see that changing the Spam
Filter requires the ‘Set-HostedContentFilterPolicy’ cmdlet. Let’s see what other cmdlets we have that share the
same noun phrase:

Get-Command *HostedContentFilter*

Looks like we have a lot of configuration cmdlets to choose from to make adjustments to the Spam Filter. Similar
to the Malware Policies and Rules we covered earlier in the chapter, the Spam Filter has Rules and Policies as well.
So we can configure more Rules and Policies depending on our need. Let’s start out with the default Spam Filter
Policy to see what is configured and what we can configure with PowerShell.

Get-HostedContentFilterPolicy

So we have one Spam Policy that we can configure called ‘Default’. Let’s review this in more detail:
Get-HostedContentFilterPolicy | Fl

188

As we can see from the screenshot above of a brand new tenant, there are a lot of settings that are off and not set.
These are off for a reason as turning them on could potentially block legitimate emails if you do not understand
what the settings do. However, there is a provided mechanism for testing settings as some of the parameters have
possible values of On, Off and Test. This last one is important if there is some uncertainty as to what the setting
will do in production. Microsoft provides a good description of these options and their effects on filtering here:

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/configure-your-spam-filter-policies

There are a couple of these settings in the Spam Filter that show ‘MoveToJmf ’:

The ‘MoveToJmf ’ setting is just an abbreviated ‘Move To Junk Mail Folder’; though it isn’t clear why this had to be
abbreviated for this property.

Example

Let’s say we want to configure our Spam Filter to test a few parameters. To help analyze the impact of the change,
we need to set the ‘TestModeAction’ parameter to either ‘AddXHeader’ or ‘BccMessage Redirect’. This will allow
us to either tag the message with a X-Header we can track or to have a copy of the message sent to a certain
address for analysis. For this example we will use an X-Header and change the MarkAsSpamFormTagsInHtml,
MarkAsSpamFramesInHtml and MarkAsSpamEmbedTagsInHtml parameters all to ‘Test’.

Set-HostedContentFilterPolicy Default -MarkAsSpamFormTagsInHtml Test -MarkAsSpamFramesInHtml
Test -MarkAsSpamEmbedTagsInHtml Test -TestModeAction BccMessage -TestModeBccToRecipients
Damian@PracticalPowerShell.Com

Now if a message matches any of these settings, a copy will be BCC’d to the email address specified in the
‘TestModeBccToRecipients’ parameter in our cmdlet.

Outbound Spam

Exchange Online Protection has an interesting feature that looks for Outbound Spam for your Exchange Online
tenant. While the feature is useful, there isn’t a lot we can configure. We can notify some admins of the emails that
are outbound Spam or we can add some BCC recipients to the message. There isn’t much else to this particular
feature.

PowerShell

There aren’t a lot of configuration settings and thus not a lot of PowerShell cmdlets available to configure it. Let’s
take a look at what we can do:

Get-Command *HostedOutbound*

Chapter 8: Defender for Office 365

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/configure-your-spam-filter-policies

189

So, we can Get and we can Set out Outbound Spam settings. First we can check to see what is set by default on the
Outbound Spam configuration:

Get-HostedOutboundSpamFilterPolicy | Fl

Now that we see what our defaults are, let’s look to configure this feature with the Set cmdlet that is available to us:

Get-Help Set-HostedOutboundSpamFilterPolicy -Examples

Sample Scenario

Take for example an organization that is worried about Spam being sent outbound from their organization and
would like have the administrators of Exchange Online notified if outbound Spam does get sent. For us to do so,
we need to configure two parameters:

• NotifyOutboundSpam - This is by default set to ‘False’, so no notifications are sent.
• NotifyOutboundSpamRecipients - This property is blank because the first one is set to False.

We just need a recipient for notifications and then we can configure the Outbound Spam settings:

Set-HostedOutboundSpamFilterPolicy Default -NotifyOutboundSpam $True
-NotifyOutboundSpamRecipients ‘Damian@PracticalPowerShell.Com’

Use a recipient that is little used as it could lead to potential confusion when email notifications for emails that are
sent by this recipient. We can run the ‘Get-HostedOutboundSpamFilterPolicy | Fl’ one-liner to verify our
configuration worked:

Using Transport Rules for Spam Protection

In addition to using EOP and other features in Exchange Online, a more rudimentary method still exists for
blocking unwanted emails - Transport Rules. While this may seem like an inelegant solution, using Transport
Rules to control SPAM is used by many corporations today. These Transport Rules could be simple or complex,
depending on the desired results. As a starting point we can use an article written by Microsoft on the subject:

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/use-transport-rules-to-
configure-bulk-email-filtering

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/use-transport-rules-to-configure-bulk-email-filtering
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/use-transport-rules-to-configure-bulk-email-filtering

190

The above article provides us with some examples of what can be done, however these are done in the EAC and
not in PowerShell. With Exchange Online we can use Transport Rules and construct some rules to control SPAM
using techniques like RegEx.

Anti-Malware

Another useful feature of MDO is Malware protection which consists of protecting mailboxes from malicious
attachments as well as blocking well known filetypes that could include executable content. Let’s review what we
have cmdlet-wise for Malware Policies / Rules:

First off, we’ll start with the Malware Filter configuration:

Get-Command *MalwareFilter*

In Exchange Online, the Malware configuration consists of two parts: Malware Filter Policy and Malware Filter
Rules. The Rules roll up and can be associated with a Policy in order to be applied. There are no requirements to
use the Malware Filter Rules as we can see that none are provided in a brand new tenant.

Malware Filter Policies

In a brand new tenant, there are no defined Malware Rules in EOP. If we were to run ‘Get-MalwareFilterRule’, no
results would be returned. However, there is a default policy, the same one you see in the Exchange Admin Center,
and the ‘Get-MalwareFilterPolicy | Fl’ cmdlet will display that configuration:

Chapter 8: Defender for Office 365

191

We can configure this Malware Filter Policy using PowerShell, so let’s review some examples of this configuration:

Get-Help Set-MalwareFilterPolicy -Examples

Example

Management has decided they would like to change the way malware messages are processed by EOP. First they
would like to have Administrators notified when a malware messages is detected. Next, if the sender is internal,
they would like to notify that user if a malware message was sent from their account. Lastly they would like to
notify an external sender if their message contained malware as well. How can we do this? First, we would need
to review the full Get-Help for the Set-MalwareFilterPolicy cmdlet.

Parameters we can use:

First step is to allow custom notifications, set a From address and a display name for that address:

-CustomNotifications $True
-CustomFromAddress ITAdmins@PracticalPowerShell.Com
-CustomFromName ‘Big Box IT Admins’

Next, we have the internal message notifications for any messages sent by your Exchange Online mailboxes. We
will enable notifications to Administrators, the sender (internal), which Administrator’s email address to use and
a custom subject and body for the notification.

-EnableInternalSenderAdminNotifications $True
-EnableInternalSenderNotifications $True
-InternalSenderAdminAddress ITAdmins@PracticalPowerShell.Com
-CustomInternalBody ‘Dear user, you have recently sent out a message that contains malware. Please
contact the IT Department.’
-CustomInternalSubject ‘Malware detected!’

Next, we have the external message notifications for any messages sent to your Exchange Online mailboxes. We
will enable notifications to administrators, the sender (external), which admin email address to use and a custom
subject and body for the notification.

-EnableExternalSenderAdminNotifications $True
-EnableExternalSenderNotifications $True
-ExternalSenderAdminAddress ITAdmins@PracticalPowerShell.Com
-CustomExternalBody ‘Dear sender, you have recently sent out a message that contains malware.
Please contact our IT Department @ ITAdmins@PracticalPowerShell.Com’
-CustomExternalSubject ‘Malware detected!’

Combining all of the options makes for one very long one-liner:

192

Set-MalwareFilterPolicy Default -CustomNotifications $True -CustomFromAddress
ITAdmins@PracticalPowerShell.Com -CustomFromName ‘Big Box IT Admins’
-EnableInternalSenderAdminNotifications $True -EnableInternalSenderNotifications $True
-InternalSenderAdminAddress ITAdmins@PracticalPowerShell.Com -CustomInternalBody
‘Dear user, you have recently sent out a message that contains malware. Please contact the IT
Department.’ -CustomInternalSubject ‘Malware detected!’ -EnableExternalSenderAdminNotifications
$True -EnableExternalSenderNotifications $True -ExternalSenderAdminAddress ITAdmins@
PracticalPowerShell.Com -CustomExternalBody ‘Dear sender, you have recently sent out a message
that contains malware. Please contact our IT Department @ ITAdmins@PracticalPowerShell.Com’
-CustomExternalSubject ‘Malware detected!’

These changes should then be verified:

Malware Filter Rules

To enhance the Malware Policies there are Malware Rules that can add to the Policies. Rules can be used like
Access Control Lists (ACLs) and determine who is affected by a particular Malware Policy by blocking or allowing
particular accounts or groups.

Get-Help New-MalwareFilterRule -Examples

Example

In the previous example we configured notifications for emails that were detected as malware. The notifications
were configured for any internal or external message and there were no restrictions placed on which mailboxes this
would apply to and thus all mailboxes are affected. What if we wanted to restrict this policy to the IT department
only, possibly for testing before putting the Malware Policy into production. If we review the full Get-Help for the
New-MalwareFileRule we see two options that we can use:

-SentToMemberOf
-MalwareFilterPolicy

Chapter 8: Defender for Office 365

193

This enabled us to create the rule, assign it to the policy and then apply it only to the IT Admins group (with the
provided SMTP address):

New-MalwareFilterRule -Name “IT Admin Testing Rule” -SentToMemberOf ITAdmins@
PracticalPowerShell.Com -MalwareFilterPolicy Default

Safe Attachments

Safe Attachments is part of Microsoft’s Advance Threat Protection suite of products and will protect your users
from malicious email attachments. It also is not enabled by default. Make sure you have the correct licensing for
this product:

Licensing - https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-attachments

Required Rights:

• Office 365 Global Admin
• Security Administrator - Security and Compliance Center
• Exchange Online Management

Overall cmdlets

Disable-SafeAttachmentRule
Enable-SafeAttachmentRule
Get-SafeAttachmentPolicy
Get-SafeAttachmentRule
New-SafeAttachmentPolicy
New-SafeAttachmentRule
Remove-SafeAttachmentPolicy
Remove-SafeAttachmentRule
Set-SafeAttachmentPolicy
Set-SafeAttachmentRule

How to Configure

In order to configure the Safe Attachment option in Exchange Online, we need to work with a pair of ideas -
Rules and Policies. We need to configure a Safe Attachment Policy and then reference this policy in a new Safe
Attachment Rule.

Examples

New-SafeAttachmentPolicy

NOTE: You cannot apply a Malware Filter Rule to the Default Malware Filter Policy.

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-attachments

194

New-SafeAttachmentRule

We first need to construct a Safe Attachment Policy with which we’ll choose some options. Then with the new
Policy we will create a Rule that will apply the Policy in a way that handles attachments. Before we create a Rule,
let’s see what options we have and what makes sense to apply and why:

Action: This is a crucial part of the Policy. Here we can decide to allow the document through, block it all
together or replace it with another file that might contain some sort of information or warning text for the
recipient.
ActionOnError: If the attachment scan fails, this determines if the ‘Action’ above is applied. $True means the
action will apply on scan failure and $False (default) the ‘Action’ is not applied upon failure.
Enable: $True - the Policy is enforced / $False - the Policy is not enforced.
Redirect: $True - detected malware is redirected to another address / $False (default) - emails are not
redirected.
RedirectAddress: The address where malware is redirected if $Redirect is $True.

For a quick sample Policy, we want to Replace the file if Malware is detected, Enable the Rule and not apply any
other changes. We need to make sure we also provide a name.

New-SafeAttachmentPolicy -Name “Replace Malware With Warning” -Action Replace -Enable $True

One warning message will occur with this Policy. The warning states that if you have an action applied, but do not
have a redirect, there is a possibility for data loss:

In order to fix this, we would need to change the Policy and add both the Redirect and the RedirectAddress:

Set-SafeAttachmentPolicy “Replace Malware With Warning” -Redirect $True -RedirectAddress
damian@practicalpowershell.com

Now we can verify our settings:

Get-SafeAttachmentPolicy “Replace Malware With Warning” | Fl

Chapter 8: Defender for Office 365

195

Don’t forget that these Policies can be updated using the Set-SafeAttachmentPolicy cmdlet. With this cmdlet we
can change pretty much the same properties we created the Policy with - Action, ActionOnError, Enable, Redirect
and RedirectAddress. So if for some reason a change needs to be made it can be done post Policy creation. An
example of this is if a new administrator is hired and is put in charge of ATP, we can redirect the messages to this
person:

Set-SafeAttachmentPolicy “Replace Malware With Warning” -RedirectAddress sally@domain.com

If for some reason the Policy needs to be decommissioned/retired, it is recommended to disable the Policy first:

Set-SafeAttachmentPolicy “Replace Malware With Warning” -Enable $False

Then once this configuration change has been tested for some period of time, then the Policy should be removed:

Remove-SafeAttachmentPolicy “Replace Malware With Warning”

Now that we have a Safe Attachment Policy, we need to create the corresponding Safe Attachment Rule. This new
rule will reference the previously created Safe Attachment Policy as well. Available parameters:

SafeAttachmentPolicy: Reference the Safe Attachment Policy created before the rule
Comments: Any notations that need to be made to inform admins of the Rule’s purpose
Enabled: $True - the Rule is enforced / $False - the Rule is not enforced
ExceptIfRecipientDomainIs: Exception made for a specified domain
ExceptIfSentTo: Exception made for a specified recipient
ExceptIfSentToMemberOf: Exception made for a specified group
Priority: Decide the order in which multiple Safe Attachment Rules are applied
RecipientDomainIs: Exception made for a specified domain
SentTo: Rule applies to specified recipients
SentToMemberOf: Rule applies to specified members of the specified group

We have a policy already created called ‘Replace Malware With Warning’, so we can use this for our example. In
this scenario we want to create a specific rule that applies to the corporate office. People in this office are in a group
called ‘Corporate’.

New-SafeAttachmentRule -Name “Corporate Attachment Rule” -SafeAttachmentPolicy “Replace
Malware With Warning” -SentToMemberOf “Corporate”

For this next scenario we have a different Safe Attachment Policy called ‘Company Wide Safe Attachments’.

New-SafeAttachmentPolicy -Name “Company Wide Safe Attachments” -Action Block -Enable $True

With this policy, we need to create a rule that will apply it to all mailboxes, except those from the previous Safe
Attachment Rule which was applied to those in the ‘Corporate’ group:

New-SafeAttachmentRule -Name “Company Wide Attachment Rule” -SafeAttachmentPolicy
“Company Wide Safe Attachments” -ExceptIfSentToMemberOf “Corporate” -RecipientDomainIs
PracticalPowerShell.com

Now we have two valid Safe Attachment Polices which are used by two Safe Attachment Rules:

196

Once the rules are in flight, we can still modify and/or remove them just like we can with the Safe Attachment
Policies. We can change the exceptions or change the targets (Send To) for the Rule as well as disable it.

Set-SafeAttachmentRule “Company Wide Attachment Rule” -ExceptIfSentToMemberOf ‘Executives’

We can also remove all Safe Attachment Rules and Policies:

Safe Links
Office 365 Safe Links is designed to protect those in Exchange Online from malicious links that may be present in
emails or Office documents. These links will be blocked if there is an appropriate configuration of the Safe Links
feature.

Licensing - https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-links

Required Rights

• Office 365 Global Admin

• Security Administrator - Security and Compliance Center

• Exchange Online Management

How to Configure

In order to configure the Safe Link option in Exchange Online, we need to work with a pair of ideas - Rules and
Policies. We need to create a Safe Link Policy and then reference this Policy in a new Safe Link Rule.

Examples
New-SafeLinksRule

Chapter 8: Defender for Office 365

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/atp-safe-links

197

New-SafeLinksPolicy

Overall Cmdlets

Disable-SafeLinksRule
Enable-SafeLinksRule
Get-SafeLinksPolicy
Get-SafeLinksRule
New-SafeLinksPolicy
New-SafeLinksRule
Remove-SafeLinksPolicy
Remove-SafeLinksRule
Set-SafeLinksPolicy
Set-SafeLinksRule

We first need to construct a Safe Links Policy with which we’ll choose some options. Then with the new Policy we
will create a rule that will apply the Policy in a way that handles links. Before we create a rule, let’s see what options
we have and what makes sense to apply and why: (Microsoft Internal parameters have been removed)

DeliverMessageAfterScan: <unknown - no help info>.
DoNotAllowClickThrough: $True - blocks a user from clicking to the original URL / $False (default) -
Allows click through to the original URL.
DoNotRewriteUrls: Specify one or more URLs that skip Safe Link scanning. (Use this in place of ExcludedUrls)
DoNotTrackUserClicks: $True (default) - do not track user clicks / $False - track user clicks.
EnableForInternalSenders: $True - Will scan internal sent emails as well, $False (default) only scans external
senders.
ExcludedUrls: Specify one or more URLs that can be skipped from scanning. (Parameters id deprecated)
IsEnabled: (Different from Get-Help which shows ‘Enabled’) - $True - enables the policy / $False - disabled
policy.
ScanUrls: $True - scans links in emails / $False (Default) - does not scan links in emails.

Let’s dive in by creating a Policy that scans links in emails (I mean, this is for Exchange Online PowerShell ...), we
want to enable scanning for internal and external senders, exclude the corporate Intranet (www.bigboxhomepage.
com) and blocks clicking through to original links.

New-SafeLinksPolicy -Name ‘Corporate Safe Links Policy’ -DoNotTrackUserClicks $False
-EnableForInternalSenders $True -IsEnabled $True -DoNotRewriteUrls ‘www.bigboxhomepage.com’
-ScanUrls $True

If we were to use ‘ExcludedUrls’ instead of the now recommended ‘DoNotRewriteUrls’, we would receive this error
message:

198

Don’t forget that these Policies can be updated using the Set-SafeLinksPolicy cmdlet. With this cmdlet we can change
pretty much the same properties we created the Policy with - DoNotTrackUserClicks, EnableForInternalSenders,
DoNotRewriteUrls, ScanUrls and more. So if for some reason a change needs to be made it can be done post
Policy creation. For example, if we want to take the Policy above and stop scanning links in emails we can run this
one-liner:

Set-SafeLinksPolicy “Corporate Safe Links Policy” -ScanUrls $False

If for some reason the Policy needs to be decommissioned/retired, it is recommended to disable the Policy first:

Set-SafeLinksPolicy “ Corporate Safe Links Policy” -Enable $False

Then once this configuration change has been tested for some period of time, then the Policy should be removed:

Remove-SafeLinksPolicy “Corporate Safe Links Policy”

Now that we have a Safe Links Policy, we need to create the corresponding Safe Links Rule. This new rule will
reference the previously created Safe Links Policy as well. Available parameters:

Comments: Any notations that need to be made to inform admins of the Rule’s purpose
Enabled: $True - the Rule is enforced / $False - the Rule is not enforced
ExceptIfRecipientDomainIs: Exception made for a specified domain
ExceptIfSentTo: Exception made for a specified recipient
ExceptIfSentToMemberOf: Exception made for a specified group
Priority: Decide the order in which multiple Safe Attachment Rules are applied
RecipientDomainIs: Exception made for a specified domain
SafeLinksPolicy: Reference the Safe Links Policy created before the Rule
SentTo: Recipient of the message being scanned
SentToMemberOf: Group recipient of the message being scanned

We have a policy already created called ‘ Corporate Safe Links Policy’, so we can use this for our example. In this
scenario we want to create a specific rule that applies to the corporate office. People in this office are in a group
called ‘Corporate’.

New-SafeLinksRule -Name “Corporate Office Links Rule” -SafeLinksPolicy “Corporate Safe Links Policy”
-SentToMemberOf “Corporate” -Enable $True

Let’s say that as part of a cleanup process for a tenant, the IT Manager decided that all Safe Links Rule need to have
comments on creation date and which IT policy it was created for, we can do so post creation:

Set-SafeLinksRule “Corporate Office Links Rule” -Comment “Created 1/1/2020 - Per IT Policy #54321”

Now let’s say we need to create a second Policy and apply it to other groups in the organization:

Set-SafeLinksPolicy “Company Wide Safe Links Policy” -Enable $False -EnableForInternalSenders $True
-ScanUrls $True -DoNotTrackUserClicks $False

What we find is that we can only use the -EnableForInternalSenders once between all Safe Link Policies: (Error
message is deceptive)

Chapter 8: Defender for Office 365

199

This means we need to reconstruct the rule like so, removing the parameter we received an error for:

New-SafeLinksPolicy “Company Wide Safe Links Policy” -Enable $False -ScanUrls $True
-DoNotTrackUserClicks $False

After creating this Policy, we can create a new Safe Links Rule to go with it:

New-SafeLinksRule -Name “Company Wide Safe Links Rule” -SafeLinksPolicy “Company Wide Safe
Links Policy” -ExceptIfSentToMemberOf “Corporate” -RecipientDomainIs: “practicalpowershell.com”
-Enable $True

Now we have two valid Safe Attachment Polices which are used by two Safe Attachment Rules:

Once the rules are in flight, we can still modify and/or remove them just like we can with the Safe Link Policies.
We can change the exceptions or change the targets (Sent To) for the Rule as well as disable it.

Set-SafeLinksRule “ Corporate Office Links Rule” -SentToMemberOf ‘Executives’

We can also remove all Safe Attachment Rules and Policies:

Now that we are done with Safe Links and Safe Attachments we’ll move on to the Anti-Phishing feature that is also
part of the ATP feature set.

MDO Best Practices

Microsoft has also released a set of recommendations and best practices for configuring options like MDO.
These recommendations should be used as general guidelines and not hard requirements of what you absolutely
should have configured. What we find is that all organizations of all sizes have such varied requirements for how
they operate, how they process email and what end results they would like to see that almost everyone will find
something that will not fit with the organization.

200

As these recommendations are subject to change over time, use the link below to see the current recommendations
by Microsoft:

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/recommended-settings-for-
eop-and-office365-atp

Tenant Allow / Block List Items

Microsoft recently released this as a Public Preview feature for Microsoft Defender for O365, which is now in
production. What the Tenant Allow/Block allows an organization to do is override a particular EOP filtering
verdict when it comes to URLs and files that could be blocked or allowed by EOP. In the Security and Compliance
Center, this can be found here:

https://security.microsoft.com/tenantAllowBlockList

Which can be found here in the GUI:

Clicking on this brings us to the new GUI interface for the Tenant Allow/Block Lists feature:

Permissions

• To add and remove values from the Tenant Allow/Block List, you need to be a member of the Organization
Management or Security Administrator role groups.

• For read-only access to the Tenant Allow/Block List, you need to be a member of the Global Reader or Security
Reader role groups.

Licensing Required

• EOP - Exchange Online Plan 1 and Plan 2 include EOP by default.

Chapter 8: Defender for Office 365

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/recommended-settings-for
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/recommended-settings-for
https://security.microsoft.com/tenantAllowBlockList

201

• Defender for Office 365 Plan 1 or 2

Conditions

• Files can be specified by using the SHA256 Hash of the file.
• URL Rules

• Punycode can be used, but not Unicode
• Hostnames should be x.x at the very least
• Subpaths not included by default [www.contoso.com/Signup]

• Wildcards can be used for paths as well as DNS names
• Max of 500 URLs and 500 File hashes in a tenant.
• The maximum number of characters for each entry is:

• File hashes = 64 / URL = 250
• An entry should be active within 30 minutes.
• Entries expire in 30 days by default, but can be set to expire differently or not at all.

PowerShell

Now that we’ve gone over the basics and the GUI interface in the Security and Compliance Center, we can now
look at the PowerShell cmdlets that will allow us to manage these settings:

Get-Command *AllowBlock*

This produces a short list of cmdlets:

Get-TenantAllowBlockListItems Get-TenantAllowBlockListSpoofItems
New-TenantAllowBlockListItems New-TenantAllowBlockListSpoofItems
Remove-TenantAllowBlockListItems Remove-TenantAllowBlockListSpoofItems
Set-TenantAllowBlockListItems Set-TenantAllowBlockListSpoofItems

What you will find with these cmdlets is that there really is very little help at the moment and even fewer examples
to help us understand what to do:

New-TenantAllowBlockListItems

With this cmdlet we can add these new block lists. No examples exist for this cmdlet in Exchange Online, however,
we can find them on the Microsoft Docs page for the cmdlet - https://docs.microsoft.com/en-us/powershell/
module/exchange/new-tenantallowblocklistitems.

Example 1

New-TenantAllowBlockListItems -ListType Url -Action Block -Entries “contoso.com”

202

Example 2

New-TenantAllowBlockListItems -ListType FileHash -Action Allow -Entries
“768a813668695ef2483b2bde7cf5d1b2db0423a0d3e63e498f3ab6f2eb13ea3” ,
“2c0a35409ff0873cfa28b70b8224e9aca2362241c1f0ed6f622fef8d4722fd9a” -NoExpiration

Also, in the list of available parameters Allow is missing and Block appears to be the only ‘action’ available:

From the two provided examples, we see that URLs are relatively straight forward process, but we do need to follow
some basic rules. These rules are spelled out here from Microsoft [here]. Now, for File Hashes we need to perform
an extra step because the value specified is a SHA256 hash value for the file. For example, if we have a file called
BlockThis.Txt which is stored in the c:\Source folder and we needed the hash, we can retrieve the appropriate
value. This can be obtained by using a CMD prompt or PowerShell window to run this one-liner:

certutil.exe -hashfile “C:\Source\BlockThis.txt” SHA256

The hash value provided can be used in PowerShell now:

 5c1fa593f95d544b661096b92a60a6f1fde4f6c17c90b77844fb68a855c30437.

Using this has value, a Block could be created:

New-TenantAllowBlockListItems -ListType FileHash -Block
 -Entries ‘5c1fa593f95d544b661096b92a60a6f1fde4f6c17c90b77844fb68a855c30437’ -NoExpiration

What available parameters do we have to create this Block or Allow?

NOTE: The examples, with the parameters shown above as well as the help above do not match what is available
as of the writing of this edition of the book. It appears that we are also missing parameters that are specified in
the Get-Help for the cmdlet. For example, there is no ‘Action’ parameter available for the cmdlet:

Chapter 8: Defender for Office 365

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/tenant-allow-block-list?view=o365-worldwide#url-syntax-for-the-tenant-allowblock-list

203

Allow: Not available yet, but would set the file or URL to be allowed by EOP
Block: Block this file or URL
Entries: List the file hashes or URLs
ExpirationDate: When this Allow or Block expires
ListType: URL or FileHash
NoExpiration: Allow or Block never expires
Notes: Add comments or notes to the Allow or Block
OutputJSON: JSON is shown for the addition

(Sample JSON Output):

Set-TenantAllowBlockListItems

Just like the New-TenantAllowBlockListItems cmdlet, no examples exist in PowerShell and we need to pull them
from the Microsoft Docs page for the cmdlet - https://docs.microsoft.com/en-us/powershell/module/exchange/
set-tenantallowblocklistitems.

Example 1

Set-TenantAllowBlockListItems -ListType Url -Ids “RgAAAAAI8gSyI_NmQqzeh-HXJBywBwCqfQNJY8h
BTbdlKFkv6BcUAAAl_QCZAACqfQNJY8hBTbdlKFkv6BcUAAAl_oSRAAAA” -ExpirationDate (Get-Date
“5/30/2021 9:30 AM”).ToUniversalTime()

Example Usage

We can take all Tenant Block lists that were set to no expiration and put a 365 day expiration on it, in order to force
a review of the Allows. We would do this as periodic reviews of these Allows is required by IT Management and
the Security Group within IT. As such, we will calculate the end date of 365 days from now and apply it to all Block
Rules. First, see which have no expiration date:

Get-TenantAllowBlockListItems -ListType FileHash -NoExpiration

204

Next, we get the date for 365 days in the future:

$Date = Get-Date
$365Days = $Date.AddDays(365)

Then we use the Set cmdlet to change the expiration to 365 days in the future:

$NoExpirationBlocks = (Get-TenantAllowBlockListItems -ListType FileHash -NoExpiration).Identity
ForEach ($NoExpirationBlock in $NoExpirationBlocks){

Set-TenantAllowBlockListItems -Ids $NoExpirationBlock -ExpirationDate $365Days -ListType FileHash
}

If we rerun this one-liner below, no results should now show:

Get-TenantAllowBlockListItems -ListType FileHash -NoExpiration

Remove-TenantAllowBlockListItems

Just like the New-TenantAllowBlockListItems cmdlet, no examples exist in PowerShell and we need to pull them
from the Microsoft Docs page for the cmdlet - https://docs.microsoft.com/en-us/powershell/module/exchange/
remove-tenantallowblocklistitems.

Example 1

Using hashes from the previous examples, we can also remove them via PowerShell:

Remove-TenantAllowBlockListItems -ListType Url -Ids “RgAAAAAI8gSyI_NmQqzeh-HXJBywBwCqfQNJ
Y8hBTbdlKFkv6BcUAAAl_QCZAACqfQNJY8hBTbdlKFkv6BcUAAAl_oSPAAAA0l”

Similar to the Set cmdlet, we need a listtype and the Ids for the items to be removed. If we decided that a Block is
no longer needed, we can get the Id and then remove that Block:

Remove-TenantAllowBlockListItems -ListType FileHash -Ids RgAAAAA4fqs4PIeBQbzo-yGiHPbfBwB-
cCadbElnQJBr5gm8mpxLAABolStSAAB-cCadbElnQJBr5gm8mpxLAABolTEtAAAA0

Chapter 8: Defender for Office 365

205

We get a result that the Block was removed:

 In addition, we can see in the console that there are two new files being blocked. Even though the creation allowed
for a single ‘rule’, two actual blocks are created, as shown here:

Client View

If we attempt to send an email with a file that matches this hash, we see this:

206

Blocked Files Alert txt file content:

Advanced Delivery

Recently added is a new feature in the Security Center called Advanced Delivery which is focused on two aspects
of mail flow control. One of these is Phish Simulation Overrides which deal with emails that are created externally
and sent to users for training users how to recognize and respond to Phish emails. The other is creating an override
specifically for Security Operations mailboxes that handle alerting and examining emails in their RAW state.

This new feature can be found in the Security Center > Policies & Rules > Threat Policies > Advanced Delivery.

Phishing Simulation Overrides

With the rise of more persistent Phishing attacks against organizations, the effort and expense of training end users
has also gained a foothold. As such organizations are now utilizing resources to simulate these attacks whether
with native Microsoft Attack Simulation training or with a third-party service which send simulated emails to
users in an organization. The problem is that Exchange Online Protection is designed to block these types of emails
as shown below:

Chapter 8: Defender for Office 365

207

Traditionally organizations follow the direction of their vendor and create Transport Rules to allow these emails
through, skipping EOP’s natural protection and the Phishing email will be delivered to the user’s mailbox:

With the Phish Simulation Override feature, EOP is provided with the well known source IPs of the third-party
service and allow their Phishing emails to pass. Now, just like any other manually configured services, this
configuration should be reviewed often as it could be forgotten and if the vendor goes out of business, the IPs
may eventually pass to another company or if the third-party removes IP addresses, the configuration would then
also be open to compromise. Consider deploying these feature carefully. Also, if you have any existing Transport
Rules, remove those as well prior to making this change to allow for replication to occur in the service.

PowerShell

Like the rest of this book, what would configuring these features be without a little PowerShell. Microsoft has
indeed provided us with the coding tools to do that with PowerShell.

Get-Command *PhishSim*

This provides us with a list of cmdlets we can use to manage this feature:

Get-PhishSimOverridePolicy
Get-PhishSimOverrideRule
New-PhishSimOverridePolicy
New-PhishSimOverrideRule
Remove-PhishSimOverridePolicy
Remove-PhishSimOverrideRule
Set-PhishSimOverridePolicy
Set-PhishSimOverrideRule

Example

In our sample scenario we have an organization that was using a third-party Phish simulation cloud service prior
to migrating to Office 365. Now the organization is having problems with the simulation emails making it to their
end user’s mailboxes and are getting caught in Exchange Online Protection (EOP). Previously the organization
would follow guidance from the vendor and created special Transport Rules to skip EOP processing. However,
these did not appear to be working 100% and tweaks are constantly needed. Currently the organization has two
domains: BigBox.Com and MediumBox.Com

Microsoft has just recently released a series of cmdlets and the IT department has decided to move forward with
these. The current Phish vendor is KnowBe4. With a bit of research we can confirm their sending IP addresses,

208

which can be used in the creation of these features.

https://support.knowbe4.com/hc/en-us/articles/203645138-Whitelisting-Data-and-Anti-Spam-Filtering-
Information#whitelist

First, we start with the New Policy and New Rule cmdlets:

New-PhishSimOverridePolicy -Name ‘KnowBe4PhishOverridePolicy’

After creating the Policy, this needs to be applied with a Rule:

New-PhishSimOverrideRule -Name ‘KnowBe4PhishOverridePolicy’ -Policy ‘KnowBe4PhishOverrideRule’
-SenderDomainIs BigBox.Com,MediumBox.Com -SenderIpRanges 147.160.167.0/26,
23.21.109.197,23.21.109.212

Once in place emails sent from KnowBe4 will pass-through and not be scanned by EOP.

Verifying a Configuration

Get cmdlets are well known for displaying the current configuration of an object or feature. In the case of the
PhishSim Override cmdlets, we need to do a bit more legwork. Settings such as IP addresses of the third-party
sender as well as the sending domain are easy enough to find as we can run these two cmdlets:

Get-PhishSimOverridePolicy
Get-PhishSimOverrideRule

What we see is results like so, relevant configurations are highlighted:

Get-PhishSimOverridePolicy

Chapter 8: Defender for Office 365

https://support.knowbe4.com/hc/en-us/articles/203645138-Whitelisting-Data-and-Anti-Spam-Filtering-Information#whitelist
https://support.knowbe4.com/hc/en-us/articles/203645138-Whitelisting-Data-and-Anti-Spam-Filtering-Information#whitelist

209

Get-PhishSimOverrideRule

However, when reviewing the configured settings we can see that no URL is displayed. The URL referred to here
is the one being used as a simulation URL, specified in the portal here:

210

In order to get this URL, we first need to connect to Exchange Online PowerShell:

Connect-ExchangeOnline

... and then we can run this cmdlet:

Get-TenantAllowBlockListItems -ListType URL -ListSubType AdvancedDelivery

This then reveals the URL:

What is confusing is that this same cmdlet exists in the Security and Compliance Center PowerShell module,
however it is missing the ListSubType parameter. In Exchange Online, this same parameter has three possible
values:

Submission: Reveals URLs that have been submitted by Admins or end users for analysis.
AdvancedDelivery: Reveals URLs that are part of Advanced Delivery configurations.
Tenant: Reveals URLs specified in the Tenant Allow/Block Lists.

Removing Rules and Policies

Remove-PhishSimOverrideRule -Identity bb154945-fe02-49bd-809b-d6d89837135f

Then we can remove the Policy that goes with it:

Remove-PhishSimOverridePolicy -Identity 8337c875-802a-476d-bdc2-28a0c845ccbc

Chapter 8: Defender for Office 365

211

SecOps Mailbox Overrides

A SecOps mailbox is a special mailbox that is set up, once configured in PowerShell / GUI, to receive unfiltered
emails from EOP or other sources. These emails can then be analyzed by an organizations Security Operations
Team, hence the concept name. We can configure this in the GUI:

Or with PowerShell. Like the rest of this book, what would configuring these features be without a little PowerShell.
Microsoft has indeed provided us with the coding tools to do that with PowerShell.

Get-Command *SecOps*

This provides us with a list of cmdlets we can use to manage this feature:

Get-SecOpsOverridePolicy
Get-SecOpsOverrideRule
New-SecOpsOverridePolicy
New-SecOpsOverrideRule
Remove-SecOpsOverridePolicy
Remove-SecOpsOverrideRule
Set-SecOpsOverridePolicy
Set-SecOpsOverrideRule

Keep in mind that in order to use this feature, a mailbox needs to be dedicated as a Sec Ops mailbox that can
be used for this analysis work. It is highly advised that a user mailbox is not used, but instead a service mailbox
should be used. For example, creating a new mailbox called SecurityTeam, designate it as a Shared mailbox and
then remove the license.

New-Mailbox -Shared -Name ‘SecurityTeam’ -DisplayName ‘Security Team’ -Alias SecurityTeam

Example

New-SecOpsOverridePolicy -Name SecTeamSecOpsOverridePolicy -SentTo SecurityTeam@
powershellgeek.com

212

Which generates this output:

This mailbox will now be displayed in the portal:

Creating a new Rule:

New-SecOpsOverrideRule -Name SecOpsOverrideRule -Policy SecOpsOverridePolicy

Chapter 8: Defender for Office 365

213

Enhanced Filtering

Exchange Online Protection behaves like we would expect any mail hygiene product to do, if an email is received
from an external source, the source is examined to determine if it is trustworthy. When the two mail servers, sending
and receiving, communicate, the servers perform SMTP authentication where the receiving server validates the
sending server information. For when EOP initiates connections with a sending SMTP server, a series of checks
are made on the sender and information in the email being sent. The main component is the concept of Email
Authentication in which Microsoft utilizes multiple DNS records to help validate information on a sending SMTP
server. Email Authentication takes place when a senders domain is checked for SPF, DMARC and DKIM DNS
records. While these records are a common way to provide domain protection, they are not consistently applied
by all domains. Not all administrators have put these records into place.

Enhanced filtering is a specific configuration for a specific mail flow scenario. This scenario comes into play when
an organization has a mail hygiene or other mail filtering service in front of Exchange Online such as ProofPoint,
Mimecast, MessageLabs and others. Why is this different? First, let’s review some email flow scenarios:

MX points to EOP: In this scenario, email will flow from an external recipient to EOP and then to the user’s
mailbox after it has been properly scanning. EOP uses it’s full breadth of protection which includes things like
anti-phishing, connection filtering, DNS looksups and other email authentication verification information. All of
these are combined to return the proper signals on the email to be delivered. Or not!

MX points to On-premises in Hybrid: In this scenario, an external email will first be routed to an organizations
on-premises Exchange Servers which will process the email and then route it to Office 365. Because Office 365
should trust an organizations own on-premises Exchange Servers, less analysis is done and the email does not pass
through as many filters since the server is a trusted source.

MX points to third-party service: In this scenario, the email flows first to an service external to EOP which will
scan the email, apply its own X-Headers and so on before handing the email off to EOP. When EOP receives the
email, it might scan the email again for malicious content and then deliver the email message. The issue here is
that EOP cannot properly perform email authentication as the email has already been intercepted and thus the

NOTE: Specifying a name for either the Rule or the Policy is essentially a non-relevant option. Whatever
you enter will be ignore by PowerShell. As we can only have one SecOps Override Policy and one Rule,
naming is completely system controlled. The Policy name is SecOpsOverridePolicy and the Rule name is
SecOpsOverrideRule followed by a GUID.

214

authentication details in the header will not match the details of the sending server.

Enhanced filtering is best put in place for the last scenario. This is also where Implicit Authentication comes into
play. Implicit Authentication is an extension of the normal Email Authentication and Microsoft deploys their own
custom algorithm to analyze these (per Microsoft):

Sender reputation
Sender history
Recipient history
Behavioral analysis
Other advanced techniques

Put together, Microsoft constructs what is known as Composite Authentication result if the Implicit Authentication
checks that it performs. This result will show up as a header value in emails sent to someone in Exchange Online.

Real World Header Sample:

Possible values for the Compauth header value are none, pass, fail and softpass. Additionally, a reason code is
stamped into the same header, mostly for Microsoft internal processes. Why does this matter? Simply put, if there
is another hygiene service between the sending server and EOP, the SMTP authentication results could be wrong
and misinterpreted. See below for the ways in which these are interpreted with EOP:

There are two way to handle this scenario. One we can create a Transport Rule to allow this connection in to

Chapter 8: Defender for Office 365

215

bypass spam detection rules or two, we can use the Enhanced Filtering Feature found in the Security Center:

To configure this with PowerShell, we need to connect to Exchange Online PowerShell (Connect-ExchangeOnline)
and then take a look at cmdlets that work with Inbound Connectors. First, what settings are enabled by default on
an Inbound Connector:

Get-InboundConnector | ft EF*

Thus we see that no value are configured, Test and Skip Last IP are set to False and other values are blank. Let’s
take the example from the before with the hygiene service located at an IP of 205.220.160.51 and we configure
skip listing/Enhanced Filtering for this service with PowerShell. First option we can choose is to allow EOP to
automatically detect the last IP address using the header, which in this case should be the service we’ve placed in
front of EOP, and just enable Enhanced Filtering like so:

Set-InboundConnector -Identity “Third-party hygiene service” -EFSkipLastIP $True

Otherwise we can specify IP addresses of the provider and add that into this cmdlet as well:

Set-InboundConnector -Identity “Third-party hygiene service” -EFSkipLastIP $False -EFSkipIPs
205.220.160.51

Configured so, all recipients in your tenant will receive the same treatment. However, if this needs to be scoped,
say for testing or specific scenarios, we can also add a list of email addresses to have the settings apply to just those
users:

NOTE: ‘EF’ was chosen because the values we need to review are for Enhanced Filtering (EF).

216

Set-InboundConnector -Identity “Third-party hygiene service” -EFSkipLastIP $True -EFUsers damian@
practicalpowershell.com,dave@practicalpowershell.com

Note that if configuring EFSkipIPs, the EFSkipLastIP value must be False.

The EFSkipMailGateway property is an interesting feature that allows us to specify a well-known provider. Current
options are:

proofpoint, symanteccloud, barracuda, mimecast, sophos, trendmicro, ciscoironportcloud, ironport

However, this property is only for Microsoft Internal use only.

Office 365 Advanced Threat Protection Recommended Configuration
Analyzer (ORCA)

One of the challenges of managing an email system in the cloud is knowing what best practices should be applied.
If a tenant has E5 licenses, then an additional set of features are available to configure, named the Advance Threat
Protection suite. Microsoft field techs have created a PowerShell module to help with assessing your configuration
and recommending appropriate actions. This module is know as ORCA or Office [atp] Recommended Configuration
Analyzer. We are provided with two versions of this module. One I would consider is the Stable/tested version and
the other is a Preview version if you want to be on the bleeding edge of the testing. Let’s start by reviewing these
modules.

Preview vs Stable Versions

One keen thing to be aware of with ORCA is that there are two different versions of the PowerShell module. There
is the stable version and then there is a Preview version for testing. Which one you use is up to the operator, you.
From testing so far I have not seen any issues with either, but your mileage may vary.

Production (Stable) – https://www.powershellgallery.com/packages/ORCA
Preview (Test) – https://www.powershellgallery.com/packages/ORCAPreview

How to Install

Like any other modern PowerShell module / modern PowerShell version, we can use the Install-Module cmdlet to
install this new module on our computer:

ORCA or ORCAPreview. Sample syntax:

Install-Module -Name ORCA
Install-Module -Name ORCAPreview

Once the install has completed, we can load the module again and run the module.

Chapter 8: Defender for Office 365

217

How to Update

The ORCA module is a downloadable module that comes from a PowerShell repository and because of this,
the module is an update-able module. Periodically this version of ORCA and ORCAPreview will increment as
additional features and bug fixes are added. These PowerShell modules can be updated like any other PowerShell
module that has been installed from a PSRepository:

Update-Module -Name ORCA
Update-Module -Name ORCAPreview

Once the update has been performed, we can load the module again and run the module.

How to check your version vs what is available

Let’s take for example that you currently have the 1.6.3 version of the ORCAPreview PowerShell module installed.
At the time we may not have checked to see if there was a newer version and we do not have the page bookmarked
to look at on the web. Luckily we can easily check to see if there is a newer version with two options:

Using What if:

Get-InstalledModule OrcaPreview | Update-Module -WhatIf

Which shows us this:

So we see that there is indeed a newer version. Which we did not upgrade to. Or, just updating without the WhatIf:

Get-InstalledModule OrcaPreview | Update-Module

Which just updates the module:

Looks like it installed with no feedback? Let’s check:

Now what if we already had 1.6.5 installed? Would we get any feedback from either cmdlet?

Nope. So if you need to automate this and need a check in your script, use the WhatIf as it will at least provide

NOTE: The below example will work for either the Preview or the Stable version of the module. Simply replace
ORCAPreview with ORCA and run the cmdlets.

218

some sort of feedback if checking for a new version. OR. Just update it every time the script runs and then load the
module to make sure the latest version is available to the script.

Finally we could use Find-Module to check what the latest version in a PowerShell repository is, like so:

Find-Module ORCA

How to Use ORCA

Between the Stable version and the Preview version there is only one difference and that is the cmdlet to run to
execute the test. Keep in mind that each module only has ONE cmdlet. There are no other cmdlets included.

Stable and Preview Versions:

Get-ORCAReport

If you execute this cmdlet AND you are not logged into any tenant, you will be asked for credentials and then the
script will run through all of its checks.

As we can see from the sample run on a test tenant, there are a lot of checks that are performed and a lot of those
are targeted to Advanced Threat Protection (ATP) settings:

Chapter 8: Defender for Office 365

219

Once the script is complete, a new HTML file will open up in your chosen browser. This report is quite detailed
with Recommendations and a list of items that checked out OK. It is color coded as well with green for OK and
yellow for Recommended actions. Each is listed in a subcategory with numerical counters to indicate how many
items need to be reviewed after the report is run. Sample report and explanation:

220

As we can see from the top of the report, we have a total of recommendations as well as a total of best practices that
are being followed. Take this list with a grain of salt. These are Microsoft’s general and broad recommendations.
You do not have to do anything if you do not want to. While some are common sense, some may not be what your
users would expect or want. Also displayed is the version of the ORCA module in use, the Office 365 tenant name
and other summary information. If you are running an old version, this should be displayed at the top:

And if you run the preview version, an additional box will be shown as well:

Scrolling down on the report, we will see each recommendation or best practice followed. All items are color coded
for easy reading:

Chapter 8: Defender for Office 365

221

Below is a sampling of the items that were checked:

Reading through the list we see there are a lot of good recommendations and settings for a tenant. There are also
settings that are being deprecated, where this tool provides notifications of that change. In the case of my report,
the tenant is un-configured and solely for testing. Your own report will look vastly different and may have items
that are flagged for change when in fact they are what you need for your own tenant.

Parameters and Switches for Get-ORCAReport

Now, since this is a custom module and custom cmdlet by Microsoft, we need to see if there are any parameters
that are available, or does it kick off some automated process. First we can review available parameters for the
cmdlet with a Ctrl+Space as shown below:

OK. So we have NoConnect, NoUpdate, NoVersionCheck, AlternateDNS and Collection. Let’s review each option:

NoConnect: If we already have an open connection to Exchange Online, we can use this option to prevent
the cmdlet from opening that connection again.
NoUpdate: Prevents the script from exiting if its not up to date.
NoVersionCheck: Do not check for old versions.
AlternateDNS: Can specify different DNS servers than what the current computer has configured.
Collection: For processing a pre-created object collection.

NOTE: In the examples section of the Get-Help for the cmdlet, we see that there is also a -Report parameter
for specifying a report name. We can instead use -Output and specify a destination HTML file for the report
like so:

Get-ORCA Report -Order c:\scripts\ORCA-Output.html

222

Cleanup

What if you have a computer where you were using ORCA / ORCAPreview for quite some time and wanted to
remove older versions to prevent any confusion for you or your scripts? First, we would need to see what versions
are available on the computer:

Get-Module -ListAvailable |where {$_.Name -like ‘ORCA*’}

Notice I have ORCA versions 0.3.2 and 1.6.3 as well as ORCAPreview versions 1.6.3 and 1.6.5. Also see the one
cmdlet on the right for all of the modules. Now, how do we remove a specific module? We would need to specify
the versions somehow with the Uninstall-Module cmdlet. But how? Let’s see what is available to us:

So we have Maximum and Minimum Version options. Minimum would work, but if we specify a very low
version number, would we be initiating an uninstall for all module with a version number greater than that? So
for ORCA if we specify 0.3.2, would it uninstall 0.3.2 AND 1.6.3? Better not take a chance. Our other option is
MaximumVersion. We could then cap off where the uninstall process stops. So in our case we would need these
two cmdlets:

Uninstall-Module ORCAPreview -MaximumVersion 1.6.3
Uninstall-Module ORCA -MaximumVersion 0.3.2

As always, be aware of your session and if you are running it as an Administrator as you may need elevated rights
for some operations:

And once the cmdlets run properly, we see that there are only two versions left.

NOTE: For your operation, you may need one or more versions of a module installed. The above is just an
exercise in cleaning up older versions if that is something that you would need to do.

Chapter 8: Defender for Office 365

223

Further reading on ORCA:

https://github.com/cammurray/orca
https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/recommended-settings-
for-eop-and-office365-atp

Configuration Analyzer

We just covered the ORCA script and explored how to download, run and use the script to create useful reports on
an Office 365 tenant’s configuration. Recently Microsoft added a button to the Security Center which does an
evaluation similar to that of the ORCA script. We can find that button under Email & Collaboration > Policies
and Rules > Threat Policies > Configuration Analyzer:

How to run the analyzer?
Simple. Click on Configuration Analyzer and an analysis of your tenant will be performed, like so:

224

Couple notes that can be made on this screenshot: first, we see tabs for ‘Standard recommendations’, the default,
‘Strict recommendations’ and ‘Configuration drift analysis and history’. This new layout provides a better list like
view, which is similar to what we see in the Secure Score as well as the new Compliance Score.

If we review the recommendations, we see that there are columns for the current configuration and what it applies
to, whether or not the change has been made and so on. We have two options that we can choose for each line
item, we can ‘Apply recommendation’ to make the proposed change, or we can simply view the policy for a better
explanation:

View: Takes us to the policy at hand and allows an analysis of the configuration before applying the change.

Apply: Whereas Apply will allow us to accept the recommended change:

What else do we get? Well if we look at The ‘Configuration drift analysis and history’ tab at the top, we see how our
configuration analysis has progressed over time:

Also, we can deep dive as far back as three months if we wish to explore that far. This page provides a good audit
trail for your configuration and may even aid in troubleshooting an issue if a change was found on a particular
date.

What is notably different between this and ORCA is that ORCA provides more background information on the
issues that are found. For example, on the ‘Enable end user spam notifications, we see these block of articles to read

Chapter 8: Defender for Office 365

225

as well as the link to the configuration page for Anti-Spam settings:

The Configuration Analyzer does not provide the knowledge links. Now, ORCA also has a flaw in that it does not
show the changes that need to be made as does the Config Analyzer. Overall they complement each other and are
geared towards different groups of people as one is GUI based and the other is driven via PowerShell.

Microsoft Defender for Office 365 Evaluation Mode

A new addition to the Security and Compliance Center (as well as the Security Admin Center) is the evaluation
mode for Microsoft Defender for Office 365. If you remember, the Advanced Threat Protection product was
renamed to Defender for Office 365. As a way to help administrators test out this feature in Office 365, Microsoft
came up with an evaluation mode that will let an organization run Defender for Office 365 in evaluation mode to
see how it’s features and functions stack up.

We can find this in the Security Center under Email & Collaboration > Policies and Rules > Threat Policies >
Evaluate Defender for Office 365:

Clicking on this button brings us to a simple scenario configuration:

Note that there is no explanation or link to a Microsoft Doc page. It can be found [here].

This feature is also in Public Preview at this time and when enabled, it will run for approximately 90 days. Microsoft
also states the following about the evaluation:

• The configuration of Microsoft Defender for Office 365 will be in the background and not visible to the
administrator.

https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/office-365-evaluation

226

• Enhanced Filtering is configured if using a third-party filtering solution.
• Daily reports will be created and sent for up to 90 days about what protection would have been provided.
• Qualified licensing is required Plan 1 or 2, Microsoft 365 E5 or Office 365 E5. Otherwise, a Trial License is

required to use this feature. A trial license will only provide 30 days of evaluation for this feature.
• URLs will be detonated and exclusions may need to be made.
• Scoping can be provided with an Inbound connector.

Reporting

Once an evaluation is created, we are provided a Dashboard to review current findings which replaces the
configuration section we used to start the evaluation:

Once real live data gets process, we will start seeing results in the dashboard like so:

Additionally we can request a report on these findings, which will send an email with a link to download and
evaluate:

Chapter 8: Defender for Office 365

227

One the CSV is downloaded, open it up in Excel and see these results:

From this evaluation CSV file, we can review what technology was applied (Column F) as well as the
NetworkMessageId that can be used in Investigations in the Security and Compliance Centers.

PowerShell

The new Evaluation Mode can also be managed somewhat from PowerShell. There are three cmdlets that are
provided for this feature:

Add-ATPEvaluation
Get-ATPEvaluation
Remove-ATPEvaluation

By default a brand new Greenfield tenant will not have an existing ATP Evaluation to query. We can however set

228

one up by simply running the Add-ATPEvaluation cmdlet. When we run this cmdlet we get a 90 day evaluation
that we can now use to test things out. What do we get with just using the defaults?

The provided start and end date are 90 days apart as expect for the evaluation. Additionally the ‘SharedWithMicrosoft’
setting is set to False. Since we have no Set cmdlet, we can only really kick off an evaluation, list an evaluation or
remove it. When using the Remove-ATPEvaluation cmdlet, the existing evaluation is set to disabled:

When adding or setting a new evaluation, it may be worth it to set some other parameters for the test. Here are
some of the available settings and what can be done with them:

InboundConnectorName: If there is a specific connector that you wish to scope the evaluation to, use this
parameter.
RecipientDomain: The evaluation can also be scoped to one of the domains in the tenant for testing.
ShareWithMicrosoft: Set this to True (default is False) to allow Microsoft to collect data on this evaluation.

You can also create more than one evaluation if that is desired, perhaps to set different conditions based on
connector or domain.

Chapter 8: Defender for Office 365

